技术汇
HOME
技术汇
正文内容
半导体的封装技术 巨头们的先进封装技术解读
发布时间 : 2025-01-19
作者 : 小编
访问数量 : 23
扫码分享至微信

巨头们的先进封装技术解读

来源:内容由半导体行业观察(ID:icbank)编译自semianalysis,谢谢。

在上《先进封装最强科普》中,我们对市场上的先进封装需求进行了一些讨论。但其实具体到各个厂商,无论是英特尔(EMIB、Foveros、Foveros Omni、Foveros Direct)、台积电(InFO-OS、InFO-LSI、InFO-SOW、 InFO-SoIS、CoWoS-S、CoWoS-R、CoWoS-L、SoIC)、三星(FOSiP、X-Cube、I-Cube、HBM、DDR/LPDDR DRAM、CIS)、ASE(FoCoS、FOEB)、索尼( CIS)、美光 (HBM)、SKHynix (HBM) 还是YMTC (XStacking),他们的封装的各不相同,而且这些封装类型也被我们所有最喜欢的 AMD、Nvidia 等公司使用。在本文中,我们将解释所有这些类型的封装及其用途。倒装芯片是引线键合后常见的封装形式之一。它由来自代工厂、集成设计制造商和外包组装和测试公司等众多公司提供。在倒装芯片中,PCB、基板或另一个晶圆将具有着陆焊盘。然后将芯片准确地放置在顶部,并使用凸块接触焊盘,之后芯片被送到回流焊炉,加热组件并回流焊凸点以将两者结合在一起。焊剂被清除,底部填充物沉积在两者之间。这只是一个基本的工艺流程,因为有许多不同类型的倒装芯片,包括但不限于fluxless。虽然倒装芯片非常普遍,但间距小于 100 微米的高级版本则不太常见。关于我们在第 1 部分中建立的先进封装的定义,只有台积电、三星、英特尔、Amkor 和 ASE 涉及使用倒装芯片技术的大量逻辑先进封装。其中 3 家公司也在制造完整的硅片,而另外两家公司则是外包组装和测试 (OSAT)。这个尺寸就是大量不同类型倒装芯片封装类型开始涌入的地方。我们将以台积电为例,然后扩展并将其他公司的封装解决方案与台积电的封装解决方案进行比较。台积电所有封装选项的最大差异与基板材料、尺寸、RDL 和堆叠有关。在标准倒装芯片中,最常见的基板通常是有机层压板,然后覆以铜。从这里开始,布线围绕核心两侧构建,讨论最多的是 Ajinomoto build-up films (ABF)。该内核在顶部构建了许多层,这些层负责在整个封装中重新分配信号和功率。这些承载信号的层是使用干膜层压(dry film lamination)和使用 CO2 激光或紫外线激光进行图案化构建的。这就是台积电的专业知识开始发挥其集成扇出 (InFO) 的地方。台积电没有使用 ABF 薄膜的标准流程,而是使用与硅制造更相关的工艺。台积电将使用东京电子涂布机/显影剂、ASML 光刻工具、应用材料铜沉积工具以光刻方式定义再分布层。重新分布层(RTL)比大多数 OSAT 可以生产的更小、更密集,因此可以容纳更复杂的布线。此过程称为扇出晶圆级封装 (FOWLP)。ASE 是最大的 OSAT,他们提供 FoCoS(基板上的扇出芯片),这是 FOWLP 的一种形式,它也利用了硅制造技术。三星还有他们的扇出系统封装 (FOSiP),主要用于智能手机、智能手表、通信和汽车。使用 InFO-R (RDL),TSMC 可以封装具有高 IO 密度、复杂路由和/或多个芯片的芯片。使用 InFO-R 最常见的产品是 Apple iPhone 和 Mac 芯片,但也有各种各样的移动芯片、通信平台、加速器,甚至网络交换机 ASIC。三星还凭借 Cisco Silicon One 在网络交换机 ASIC 扇出市场中获胜。InFO-R 的进步主要与扩展到具有更多功耗和 IO 的更大封装尺寸有关。有不少传言称 AMD 将为其即将推出的 Zen 4 客户端(如上图所示)和服务器 CPU 采用扇出封装。SemiAnalysis 可以确认基于 Zen 4 的桌面和服务器产品将使用扇出。然后,该扇出将传统地封装在标准有机基板的顶部,该基板的底部将具有 LGA 引脚。包装这些产品的公司和转向扇出的技术原因将后面揭晓。标准封装将具有核心基板,每侧有 2 到 5 层重分布层 (RDL),包括更高级的集成扇出。台积电的 InFO-SoIS(集成基板系统)将这一概念提升到一个新的水平。它提供多达 14 个重新分布层 (RDL),可在芯片之间实现非常复杂的布线。在靠近管芯的基板上还有一层更高密度的布线层。TSMC 还提供InFO-SOW(晶圆上系统),它允许扇出包含数十个芯片的整个晶圆的大小。我们撰写了有关使用这种特殊包装形式的 Tesla Dojo 1 的文章。我们还在特斯拉去年的 AI 日公布这项技术的几周前独家披露了该技术的使用情况。特斯拉将在 HW 4.0 中使用三星 FOSiP。最后,在台积电的集成扇出阵容中,还有 InFO-LSI(本地硅互连)。InFO-LSI 是 InFO-R,但在多个芯片下方有一块硅。这种局部硅互连将开始作为多个die之间的无源互连,但未来可以演变为有源(晶体管和各种 IP)。它最终也将缩小到 25 微米,但我们认为第一代不会出现这种情况。第一款采用这种类型封装的产品将在后面展示。立即想到的比较最有可能是英特尔的 EMIB(嵌入式多芯片互连桥),但这并不是真正的最佳选择。它更像是 Intel 的 Foveros Omni 或 ASE 的 FOEB。让我们解释一下。英特尔的嵌入式多芯片互连桥被放置在传统的有机基板腔体中。然后继续构建衬底。虽然这可以由英特尔完成,但 EMIB 的放置和构建也可以由传统的有机基板供应商完成。由于 EMIB 芯片上的大焊盘以及沉积层压布线和通孔的方法,不需要在基板上非常准确地放置芯片。通过继续使用现有的有机层压板和 ABF 供应链,英特尔放弃了更昂贵的硅基板材料和硅制造工艺。总的来说,这条供应链是商品化的,尽管目前由于短缺而相当紧张。自 2018 年以来,英特尔的 EMIB 一直在产品中发货,包括 Kaby Lake G、各种 FPGA、Xe HP GPU 和某些云服务器 CPU,包括 Sapphire Rapids。目前所有 EMIB 产品都使用 55 微米,但第二代是 45 微米,第三代是 40 微米。英特尔可以通过这个芯片将功率推送到上面的有源芯片。如果需要,英特尔还可以灵活地设计封装以在没有 EMIB 和某些小芯片的情况下运行。在英特尔 FPGA 的一些拆解发现,如果英特尔发货的 SKU 不需要它,英特尔将不会放置 EMIB 和有源芯片。这允许围绕某些细分市场的物料清单进行一些优化。最后,英特尔还可以通过仅在需要的地方使用硅桥来节省制造成本。这与台积电的 CoWoS 形成鲜明对比,后者将所有芯片都放置在单个大型无源硅桥的顶部。稍后会详细介绍,但台积电的 InFO-LSI 和英特尔的 EMIB 之间的最大区别在于基板材料和制造工艺的选择。更复杂的是,日月光还拥有自己的2.5D封装技术,与英特尔的EMIB和台积电的InFO-LSI截然不同。它被用于 AMD 的 MI200 GPU,该 GPU 将用于多台高性能计算机,包括美国能源部的 Frontier exascale 系统。ASE 的 FOEB 封装技术与台积电的 InFO-LSI 更相似,因为它也是扇出。TSMC 使用标准的硅制造技术来构建 RDL。一个主要区别是 ASE 使用玻璃基板面板而不是硅。这是一种更便宜的材料,但它还有一些其他好处,我们将在后面讨论。ASE 不是将无源互连芯片嵌入基板的空腔中,而是放置芯片,构建铜柱,然后构建整个 RDL。在 RDL 之上,有源硅 GPU die和 HBM die使用微凸块进行连接。然后使用激光脱模工艺将玻璃中介层从封装中移除,然后在使用标准倒装芯片工艺将其安装到有机基板上之前完成封装的另一面。ASE 对 FOEB 与 EMIB 提出了许多声明,但有些是完全错误的。ASE 需要推销他们的解决方案是可以理解的,但让我们消除噪音。EMIB 收益率不在 80% 到 90% 的范围内。EMIB 的收益率接近 100%。第一代 EMIB 在芯片数量方面确实有缩放限制,但第二代没有。事实上,英特尔将发布有史以来最大封装的产品,一种采用第二代 EMIB 的92mm x 92mm BGA 封装的高级封装。通过在整个封装中使用扇出和光刻定义的 RDL,FOEB 确实保留了布线密度和芯片到封装凸点尺寸方面的优势,但这也更昂贵。与台积电相比,最大的区别似乎是最初的玻璃基板材料与硅。部分原因可能是因为 ASE 的成本受到更多限制。ASE 必须以更低的价格提供出色的技术来赢得客户。台积电是芯片大师,专注于他们熟悉的技术,台积电有着将技术推向极致的文化,在这种推动下,他们最好选择硅。现在回到台积电的其他高级封装选项,因为我们还有一些要做。CoWoS 平台还有 CoWoS-R 和 CoWoS-L 平台。它们与 InFO-R 和 InFO-L 几乎 1 比 1 对应。这两者之间的区别更多地与过程有关。InFO 是先芯片工艺,首先放置芯片,然后围绕它构建 RDL。使用 CoWoS,先建立 RDL,然后放置芯片。对于大多数试图了解高级封装的人来说,区别并不那么重要,所以今天我们将轻松地讨论这个话题。最大的亮点是 CoWoS-S(硅中介层)。它涉及采用已知良好的芯片,倒装芯片将其封装到无源晶圆上,该晶圆上具有图案化的导线。这就是 CoWoS 名称的来源,Chip on Wafer on Substrate。从长远来看,它是体积最大的 2.5D 封装平台。如第 1 部分所述,这是因为 P100、V100 和 A100 等 Nvidia 数据中心 GPU 使用 CoWoS-S。虽然 Nvidia 的销量最高,但 Broadcom、Google TPU、Amazon Trainium、NEC Aurora、Fujitsu A64FX、AMD Vega、Xillinx FPGA、Intel Spring Crest 和 Habana Labs Gaudi 只是 CoWoS 使用的几个值得注意的例子。大多数使用 HBM 计算的重型芯片,包括来自各种初创公司的 AI 训练芯片都使用 CoWoS。为了进一步说明 CoWoS 的普及程度,这里有一些来自 AIchip 的引述。AIchip是一家台湾设计和IP公司,主要利用台积电CoWoS平台协助与AI芯片相关的EDA、物理设计和产能工作。台积电甚至没有参加与 CoWoS 容量相关的所有会议,因为台积电已经销售了他们生产的所有产品,而且要支持所有这些设计需要太多的工程时间。另一方面,台积电的客户集中度较高(英伟达),因此台积电希望与其他公司合作。AIchip 有点像中间人,即使 Tier 1 客户(Nvidia)预订了一切,AIchip 仍然获得一些容量。即便如此,他们也只能得到他们想要的 50%。让我们转身看看英伟达在做什么。在第三季度,他们的长期供应义务跃升至 69亿美元,更重要的是,Nvidia 预付款16.4亿美元,并且未来将再预付款17.9亿美元。英伟达正在吞噬供应,特别是针对 CoWoS。回到技术上,CoWoS-S 多年来经历了一次演变。主要特点是中介层面积越来越大。由于 CoWoS 平台使用硅制造技术,因此它遵守称为光罩限制的原则。使用 193nm ArF 光刻工具可以印刷的最大尺寸为 33mm x 26mm (858mm 2 )。硅中介层的主要用途也是光刻定义的,即连接位于其上的芯片的非常密集的电线。英伟达的芯片早已接近标线限制,但仍需要连接到封装的高带宽内存。上图包含一个 Nvidia V100,这是 Nvidia四年前推出的 GPU,它的面积是 815平方毫米。一旦包含 HBM,它就会超出光刻工具可以打印的光罩限制,但台积电想出了如何连接它们。台积电通过做光罩拼接来实现这一点。台积电在此增强了他们的能力,可以为硅中介层提供 3 倍大小的掩模版。鉴于标线拼接的局限性,英特尔 EMIB、TSMC LSI 和 ASE FOEB 方法具有优点。他们也不必处理与大型硅中介层一样多的费用。除了增加掩模版尺寸外,他们还进行了其他改进,例如将微凸块从焊料改为铜以提高性能/功率效率、iCap、新的 TIM/盖子封装等。有一个关于 TIM/盖子包装的有趣故事。在Nvidia V100上,Nvidia 拥有一个无处不在的 HGX 平台,该平台可以运送到许多服务器 ODM,然后运送到数据中心。可以应用于冷却器螺钉以实现正确安装压力的扭矩非常具体。这些服务器 ODM 在这些价值 10,000 美元的 GPU 上过度拧紧了冷却器和芯片。Nvidia 的 A100 转移到在芯片上有盖子的封装,而不是直接冷却芯片。当 Nvidia 的 A100 和未来的 Hopper DC GPU 仍然需要散发大量热量时,这类封装的问题就会出现。为了解决这个问题,台积电和英伟达在封装上进行了很多优化。三星也有类似于 CoWoS-S 的 I-Cube 技术。三星使用这种封装的唯一主要客户是百度的 AI 加速器。接下来我们有 Foveros。这就是英特尔的3D芯片堆叠技术。Foveros 不是一个裸片在另一个裸片的顶部活动,而后者本质上只是密集的导线,Foveros 涉及两个包含活动元素的裸片。有了这个,英特尔第一代 Foveros 于 2020 年 6 月在 Lakefield 混合 CPU SOC 中推出。该芯片不是特别大的容量或令人叹为观止的芯片,但它是英特尔的许多第一款芯片,包括 3D 封装和他们的第一个混合 CPU 内核具有大性能核心和小效率核心的架构。它采用了 55 微米的凸点间距。下一个 Foveros 产品是 Ponte Vecchio GPU,经过多次延迟,它应该在今年推出。它将包括与 EMIB 和 Foveros 一起封装的 47 个不同的有源小芯片。Foveros 芯片到芯片的连接采用 36 微米的凸点间距。未来,英特尔的大部分客户端阵容都将采用3D堆栈技术,包括代号为Meteor Lake、Arrow Lake、Lunar Lake的客户端产品。Meteor Lake 将是首款采用 Foveros Omni 和 36 微米凸点间距的产品。第一个包含 3D 堆栈技术的数据中心 CPU 代号为 Diamond Rapids,其名称是 Granite Rapids。我们将在本文中讨论其中一些产品使用的节点以及英特尔与台积电的关系。Foveros Omni 的全称是 Foveros Omni-Directional Interconnect (ODI)。它弥补了 EMIB 和 Foveros 之间的差距,同时还提供了一些新功能。Foveros Omni 可以作为两个其他芯片之间的有源桥接芯片,作为完全位于另一个芯片下方的有源芯片,或位于另一个芯片顶部但悬垂的芯片。Foveros Omni 从未像 EMIB 那样嵌入基板内部,它在任何情况下都完全位于基板之上。堆叠类型会导致封装基板与位于其上的芯片的连接高度不同的问题。英特尔开发了一种铜柱技术,让他们可以将信号和电源传输到不同的 z 高度并通过芯片,这样芯片设计人员在设计 3D 异构芯片时可以有更多的自由。Foveros Omni 将从 36 微米的凸点间距开始,但在下一代将降低到 25 微米。我们要注意的是,DRAM 还使用了先进的 3D 封装。HBM 多年来一直在三星、SK 海力士和美光使用先进封装。将制造存储单元并连接到暴露并形成微凸块的 TSV。最近,三星甚至开始推出 DDR5 和 LPDDR5X 堆栈,它们利用类似的堆栈技术来提高容量。SKHynix 正在其 HBM 3 中引入混合键合。SKHynix 将把 12 个芯片键合在一起,每个芯片的厚度约为 30 微米,并带有混合键合 TSV。混合键合是一种技术,它不使用凸点,而是将芯片直接与硅通孔连接。如果我们回到倒装芯片工艺,没有凸块形成、助焊剂、回流或模下填充芯片之间的区域。铜直接遇到铜。实际过程非常困难,上面部分详述。在本系列的下一部分中,我们将深入研究工具生态系统和混合绑定类型。与之前描述的任何其他封装方法相比,混合键合能够实现更密集的集成。最著名的混合键合芯片当然是最近宣布的 AMD 的 3D 堆叠缓存,它将于今年晚些时候发布。这利用了台积电的 SoIC 技术。英特尔的混合键合品牌称为 Foveros Direct,三星的版本称为 X-Cube。Global Foundries 公开了使用混合键合技术的 Arm 测试芯片。产量最高的混合键合半导体公司不是台积电,今年甚至明年也不会是台积电。出货最多的混合键合芯片的公司实际上是拥有 CMOS 图像传感器的索尼。事实上,假设你有一部高端手机,你的口袋里可能有一个包含混合粘合 CMOS 图像传感器的设备。如第 1 部分所述,索尼已将间距缩小至 6.3 微米,而 AMD 的 V-cache 间距为 17 微米。目前索尼提供 2 stack 和 3 stack 版本。在 2 堆栈中,像素位于电路的顶部。在 3 堆栈版本中,像素堆叠在电路顶部的 DRAM 缓冲区缓存的顶部。随着索尼希望将像素晶体管从电路中分离出来并创建具有多达 4 层硅的更先进的相机,进步仍在继续。由于其 CMOS 图像传感器业务,三星是混合键合芯片的第二大出货量出货商。混合键合的另一个即将大批量应用是来自长江存储技术公司的 Xtacking。YMTC 使用晶圆到晶圆键合技术将 CMOS 外围堆叠在 NAND 门下方。我们在这里详细介绍了这项技术的好处,但简而言之,它允许 YMTC 在给定一定数量的 NAND 层数的情况下安装更多的 NAND 单元,而不是任何其他 NAND 制造商,包括三星、SK 海力士、美光、Kioxia 和西部数据。关于各种类型的倒装芯片、热压键合和混合键合工具,有很多话要说,但我们将把这些留到下一篇。投资者对 Besi Semiconductor、ASM Pacific、Kulicke 和 Soffa、EV Group、Suss Microtec、SET、Shinkawa、Shibaura 和 Applied Materials 的共同认识是不正确的,这里的各种公司和封装类型使用工具的多样性非常广泛. 但赢家并不像看起来那么明显。

★ 点击文末【阅读原文】,可查看本文原文链接!

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2913内容,欢迎关注。

晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装

原文链接!

九种常见的芯片封装技术

来源:内容来自公众号「架构师技术联盟」,谢谢。

元件封装起着安装、固定、密封、保护芯片及增强电热性能等方面的作用。同时,通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。

因此,芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。而且封装后的芯片也更便于安装和运输。由于封装的好坏,直接影响到芯片自身性能的发挥和与之连接的PCB设计和制造,所以封装技术至关重要。

衡量一个芯片封装技术先进与否的重要指标是:芯片面积与封装面积之比,这个比值越接近1越好。

封装时主要考虑的因素:

芯片面积与封装面积之比,为提高封装效率,尽量接近1:1。

引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能。

基于散热的要求,封装越薄越好。

封装大致经过了如下发展进程:

结构方面。

TO→DIP→PLCC→QFP→BGA→CSP。

材料方面。金属、陶瓷→陶瓷、塑料→塑料。

引脚形状。长引线直插→短引线或无引线贴装→球状凸点。

装配方式。通孔插装→表面组装→直接安装。

以下为具体的封装形式介绍:

SOP/SOIC封装

SOP是英文Small Outline Package的缩写,即小外形封装。

SOP封装

SOP封装技术由1968~1969年菲利浦公司开发成功,以后逐渐派生出:

SOJ,J型引脚小外形封装

TSOP,薄小外形封装

VSOP,甚小外形封装

SSOP,缩小型SOP

TSSOP,薄的缩小型SOP

SOT,小外形晶体管

SOIC,小外形集成电路

DIP封装

DIP是英文“Double In-line Package”的缩写,即双列直插式封装。

DIP封装

插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。

PLCC封装

PLCC是英文“Plastic Leaded Chip Carrier”的缩写,即塑封J引线芯片封装。

PLCC封装

PLCC封装方式,外形呈正方形,32脚封装,四周都有管脚,外形尺寸比DIP封装小得多。PLCC封装适合用SMT表面安装技术在PCB上安装布线,具有外形尺寸小、可靠性高的优点。

04TQFP封装

TQFP是英文“Thin Quad Flat Package”的缩写,即薄塑封四角扁平封装。四边扁平封装工艺能有效利用空间,从而降低对印刷电路板空间大小的要求。

TQFP封装

由于缩小了高度和体积,这种封装工艺非常适合对空间要求较高的应用,如PCMCIA卡和网络器件。几乎所有ALTERA的CPLD/FPGA都有TQFP封装。

PQFP封装

PQFP是英文“Plastic Quad Flat Package”的缩写,即塑封四角扁平封装。

PQFP封装

PQFP封装的芯片引脚之间距离很小,管脚很细。一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100以上。

TSOP封装

TSOP是英文“Thin Small Outline Package”的缩写,即薄型小尺寸封装。TSOP内存封装技术的一个典型特征就是在封装芯片的周围做出引脚。TSOP适合用SMT(表面安装)技术在PCB上安装布线。

TSOP封装

TSOP封装外形,寄生参数(电流大幅度变化时,引起输出电压扰动)减小,适合高频应用,操作比较方便,可靠性也比较高。

BGA封装

BGA是英文“Ball Grid Array Package”的缩写,即球栅阵列封装。20世纪90年代,随着技术的进步,芯片集成度不断提高,I/O引脚数急剧增加,功耗也随之增大,对集成电路封装的要求也更加严格。为了满足发展的需要,BGA封装开始被应用于生产。

BGA封装

采用BGA技术封装的内存,可以使内存在体积不变的情况下内存容量提高两到三倍,BGA与TSOP相比,具有更小的体积,更好的散热性和电性能。BGA封装技术使每平方英寸的存储量有了很大提升,采用BGA封装技术的内存产品在相同容量下,体积只有TSOP封装的三分之一。另外,与传统TSOP封装方式相比,BGA封装方式有更加快速和有效的散热途径。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率。虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能。厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

TinyBGA封装

说到BGA封装,就不能不提Kingmax公司的专利TinyBGA技术。TinyBGA英文全称为“Tiny Ball Grid”,属于是BGA封装技术的一个分支,是Kingmax公司于1998年8月开发成功的。其芯片面积与封装面积之比不小于1:1.14,可以使内存在体积不变的情况下内存容量提高2~3倍。与TSOP封装产品相比,其具有更小的体积、更好的散热性能和电性能。

采用TinyBGA封装技术的内存产品,在相同容量情况下体积,只有TSOP封装的1/3。TSOP封装内存的引脚是由芯片四周引出的,而TinyBGA则是由芯片中心方向引出。这种方式有效地缩短了信号的传导距离,信号传输线的长度仅是传统的TSOP技术的1/4,因此信号的衰减也随之减少。这样不仅大幅提升了芯片的抗干扰、抗噪性能,而且提高了电性能。采用TinyBGA封装芯片可抗高达300MHz的外频,而采用传统TSOP封装技术最高只可抗150MHz的外频。

TinyBGA封装的内存其厚度也更薄(封装高度小于0.8mm),从金属基板到散热体的有效散热路径仅有0.36mm。因此,TinyBGA内存拥有更高的热传导效率,非常适用于长时间运行的系统,稳定性极佳。

QFP封装

QFP是“Quad Flat Package”的缩写,即小型方块平面封装。QFP封装在早期的显卡上使用的比较频繁,但少有速度在4ns以上的QFP封装显存,因为工艺和性能的问题,目前已经逐渐被TSOP-II和BGA所取代。QFP封装在颗粒四周都带有针脚,识别起来相当明显。四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。

QFP封装

基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP是最普及的多引脚LSI封装,不仅用于微处理器,门陈列等数字逻辑LSI电路,而且也用于VTR信号处理、音响信号处理等模拟LSI电路。

引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm等多种规格,0.65mm中心距规格中最多引脚数为304。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2214期内容,欢迎关注。

相关问答

半导体有那几种封装形式?

半导体封装是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片的过程。封装过程为:来自晶圆前道工艺的晶圆通过划片工艺后被切割为小的晶片(Die),...

芯片封装和封测的区别?

区别如下:封装是对晶圆进行划片、贴片、键合、电镀等一系列流程,以保护芯片免受物理、化学等环境造成的损伤,增强芯片的散热性能,将芯片的输入或输出端口引...

华为半导体封装是什么?

答:华为半导体封装专利是指华为公司在半导体封装领域所拥有的技术专利。半导体封装是将芯片封装在外壳中以保护芯片及提供连接电路的过程。华为在半导体封装领...

半导体激光器为什么耦合封装?

在光电子器件领域,耦合工艺是半导体激光器封装过程中一个非常重要的工艺,直接决定着半导体激光器的性能。目前普遍的耦合工艺是采用准直透镜、隔离器以及聚焦...

半导体封装cei是什么意思?

CEI是半导体封装的一种标准,全称为Chip-on-Board(COB)withEncapsulatedInterconnect(CEI)。它是一种封装技术,将芯片直接连接到印刷电路板上,然...

半导体封装厂排名?

第一名,北方华创已成功进入日月光供应链,在先进封装领域,为客户量身打造的UBM/RDL金属沉积设备、TSV金属沉积设备、TSV刻蚀设备及工艺已经实现了在国内主流先...

半导体行业比如芯片制造,封装,测试方面的?

封测行业和外壳行业不同;封测企业一般不会生产封装的外壳。通常,外壳的体罚是针对金属封装或者陶瓷封装来说的;对于我们见的最多的塑料封装而言,一般没有外壳...

华进半导体封装先导技术研发中心有限公司怎么样?

简介:华进半导体封装先导技术研发中心有限公司于2012年9月在江苏无锡新区注册成立,专注于系统级封装与集成先导技术研发与产业化。公司英文全称为:NationalCe...

长期在无尘芯片封装测试车间上班身体会出问

[回答]您好,您的情况是职业病的可能。,因为您的情况是接触大量的腐蚀性气体及酸性的气体,是可以导致您的肺部出现纤维化等病变的,建议你注意加强职业保护...

半导体封装设备怎么销售?

半导体封装设备的销售通常需要以下步骤:1.市场调查:了解目标市场的需求和竞争情况,评估潜在销售机会。2.销售计划制定:制定销售目标和策略,确定销售渠道和...

 诚卡网  丙二醇单甲醚 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2025  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部