技术汇
HOME
技术汇
正文内容
半导体光子学与技术 拓扑光子学—半导体技术发展的高速公路
发布时间 : 2024-11-23
作者 : 小编
访问数量 : 23
扫码分享至微信

拓扑光子学—半导体技术发展的高速公路

翻译自——spectrum

激光、芯片和量子电路都可以从这种模糊的现象中受益

自2007年拓扑绝缘体首次问世以来,这种内部绝缘、外部导电的新型材料激发了研究人员对其在电子领域的潜力的兴趣。然而,一种相关但更模糊的材料——拓扑光子,可能会首先达到实际应用。

拓扑学是数学的一个分支,研究形状的哪些方面能承受变形。例如,一个形状像环的物体可以变形成杯子形状,环上的孔形成了杯子柄上的孔,但是不能变形成没有孔的形状。

利用拓扑学知识,研究人员开发了拓扑绝缘体。沿这些材料的边缘或表面移动的电子能强烈地抵抗任何可能阻碍它们流动的干扰,就像变形环上的空穴能抵抗任何变化一样。

最近,科学家们设计了一种光子拓扑绝缘体,在这种绝缘体中,光具有类似的“拓扑保护”。“这些材料在结构上有规律的变化,使得特定波长的光沿着它们的表面流动,而不会散射或损失,甚至在角落和缺陷周围。”

拓扑光子学的三个有前途的潜在用途:

扫描电子显微镜图像中显示的电子驱动拓扑激光以太赫兹频率工作。

拓扑激光在这些新材料的第一个实际应用中可能是包含拓扑保护激光。例如,南加州大学的Mercedeh Khajavikhan和她的同事们开发了拓扑激光器,这种激光器比传统设备更有效,而且被证明更能抵抗缺陷。

第一个拓扑激光器每一个都需要一个外部激光来激发它们工作,但限制了实际应用。然而,新加坡和英国的科学家最近开发了一种电力驱动的拓扑激光器。

研究人员首先将砷化镓和砷化铝层夹在一起制成晶圆。当带电时,晶圆片发出明亮的光。

科学家们在晶圆片上钻了一个晶格孔。每个孔就像一个等边三角形,四角被削掉了。格子周围是形状相同的洞,方向相反。

晶圆片上受拓扑保护的光沿着不同孔组之间的界面流动,并以激光束的形式从附近通道中出现。新加坡南洋理工大学的电气和光学工程师王奇杰介绍,该设备被证明具有很强的抗缺陷能力。

激光工作在太赫兹频率,这对成像和安检是有用的。Khajavikhan和她的同事们现在正在开发一种可以在近红外波段工作的激光雷达,可能用于电信、成像和激光雷达。

扫描电子显微镜(SEM)图像显示了宾夕法尼亚大学开发的一种光子拓扑绝缘体。

通过使用光子而不是电子,光子芯片有望比传统电子设备更快地处理数据,这可能支持5G甚至6G网络的高容量数据路由。光子拓扑绝缘子在光子芯片中具有特殊的应用价值,可以引导光绕过缺陷。

然而,拓扑保护只在材料的外部起作用,这意味着光子拓扑绝缘体的内部有效地浪费了空间,极大地限制了这种设备的紧凑程度。

为了解决这个问题,宾夕法尼亚大学的光学工程师梁峰和他的同事们开发了一种具有边缘的光子拓扑绝缘体,他们可以对其进行重新配置,这样整个设备就可以传输数据。他们制造了一个250微米宽的光子芯片,并在上面蚀刻了椭圆环。通过外部激光泵入芯片,他们可以改变单个光圈的光学特性,这样“我们就可以把光送到芯片中我们想要的任何地方,”冯介绍到。——从任何输入端口到任何输出端口,甚至是一次多个输出端口。

总而言之,该芯片承载的端口数是目前最先进的光子路由器和交换机的数百倍。研究人员现在正在开发一种集成的方式来完成这项任务,而不是要求用芯片外的激光来重新配置芯片。

这幅艺术家的渲染图显示了受地形保护的光子在硅波导中移动。

在理论上基于量子位元的量子计算机是非常强大的。但是基于超导电路和捕获离子的量子位很容易受到电磁干扰,因此很难扩展到有用的机器上。但基于光子的量子位元可以避免这类问题。

量子计算机只有在它们的量子位元被“纠缠”,或连接在一起作为一个量子位元时才能工作。纠缠态是非常脆弱的,研究人员希望拓扑保护可以保护光子量子位元不受散射和当光子遇到不可避免的制造错误时可能发生的其他干扰。

光子科学家Andrea Blanco-Redondo现在是诺基亚贝尔实验室硅光子学的负责人,她和她的同事们制作了硅纳米线的格子,每条宽450纳米,并将它们平行排列。晶格中的纳米线偶尔会被两道粗缝与其它纳米线隔开。这在晶格中产生了两种不同的拓扑结构,而沿着这些拓扑结构边界向下移动的纠缠光子在拓扑结构上得到了保护,即使研究人员在晶格上添加了缺陷。希望这种拓扑保护可以帮助基于光的量子计算机解决远远超出主流计算机能力的问题。

利用拓扑光子学创造激光束,性能出乎意料的优秀

光纤激光器是最为广泛应用的一种激光器。根据预测,全球光纤激光器的销售额将由 2017年的 15.90 亿美元增加到 2020 年的 25.00 亿美元,年复合增长率为 16.28%。随着激光器的急速发展,相应的,各国在激光技术上的研究也从未停止过。

在最新的研究中,以色列海法Technion研究所的Mordechai Segev及其团队基于拓扑光子学创造了一个激光束,且其中的光波是同相的。这就意味着该技术的能量损耗将会更低,即激光发射效率更高。

实验中,研究团队将一系列圆形通道蚀刻到半导体材料芯片的表面,并从芯片上方将红外光投射到该结构上,这些圆形通道精确捕获特定波长的光波,然后使光波从一个环路移动到下一个环路,以形成光子系统。

但是在光子系统中,波传播的方向是可逆的,这样会导致能量损耗。去年,在加利福尼亚大学BoubacarKanté的研究中,他采用磁场来限制波的传播来解决这个问题;与之不同的是,此次Segev采用的是,圆形通道的不对称设计,该设计本身就会优先筛选波的一个方向的传播,这样不但避免了能量损耗的问题,还使得循环光脉冲被增强或放大。

两种方法有着本质的区别,虽然BoubacarKanté的方法形成了激光束,但是利用磁场对其进行限制或多或少对激光束的发射能量进行了削弱,而Segev的改进则要巧妙得多。

对此,Segev说道:“这要得益于拓扑保护,该系统完美的告诉我们不完美的恰恰是最稳定的。”

“大多数物理学家怀疑拓扑光子学会和激光产生兼容,从而导致发射不了激光,但事实上,这些系统通常比我们现有的系统更容易工作。”

集成光子学的国际路线图

本文由半导体产业纵横(ID:ICVIEWS)编译自eenewseurope

将光子和电子集成电路融为一体非常值得研究。

荷兰的PhotonDelta和麻省理工学院微光子学中心已经制定了集成光子学的国际路线图。该计划涉及400多个组织的贡献,包括空中客车公司,Meta,美国宇航局,杜邦电子公司,通用汽车公司,欧洲航天局和沃达丰Ziggo。PhotonDelta首席技术官Peter van Arkel将潜在影响描述为“壮观”。

集成光子学系统路线图(IPSR-I)是在过去3年中制定出来的,它确定了集成光子学可以彻底改变射频光子学(无线通信)、3D 成像、数据通信和传感等行业的关键技术差距。这对欧洲半导体公司来说是一个重大推动力。

光子学与电子学的集成是创造更小、更快、更节能的器件的关键推动因素。该集成有可能扩展功能并创建大量新应用程序,并有助于解锁许多领域的重大进步,包括自动驾驶汽车、数据电信和医疗保健。集成光子学也是用于传感和通信应用的光生成、处理和检测的技术。

IPSR-I描述了来自100多个讲习班和13个会议的400多名专家达成的共识。它全面概述了PIC批量生产的主要技术差距,并详细分析了集成光子学行业为实现其潜力而需要克服的挑战。

PhotonDelta首席技术官Peter van Arkel表示:“利用综合光子学行业和学术界的所有研发资源来解决IPSR-I确定的技术差距,将有助于以惊人的方式解决巨大的社会挑战。路线图的核心是集成光子学行业的全球方法,以团结起来应对核心挑战。对于如此多样化的贡献者群体,就这些技术差距达成共识是非常具有挑战性的。从结果来看,这绝对是值得的。”

麻省理工学院材料科学与工程托马斯·洛德教授莱昂内尔·基默林(Lionel Kimerling)说:“电子光子集成有能力从根本上改变许多行业,并解锁一系列将改变我们生活的新技术。将这一愿景转变为大批量生产需要一个经过深思熟虑的计划,该计划建立在不同领域、组织和国家的大量专家的知识之上。这就是IPSR-I所追求的——它勾勒出一条清晰的前进方向,并指明了未来15年扩展性能和应用的创新学习曲线。”

光子集成电路(PIC)可以比电子集成电路更有效地处理和传输数据。与传统芯片一样,生产过程采用自动晶圆级技术进行。这使得芯片可以大规模生产,从而降低成本。

11亿欧元用于欧洲光子学供应链

PhotonDelta是一个由光子芯片技术组织组成的跨境生态系统,它筹集了公共和私人投资,到2030年,它的目标是创建一个拥有数百家公司的生态系统,服务于全球客户,晶圆产能达到每年100,000+。

整个行业对量子计算、医疗保健和通信的兴趣越来越大。数据网络巨头瞻博网络(Juniper)宣布,它将使用Tower Semiconductor的开放式光子学工艺开发套件(PDK)将其技术分拆到与Synopsys的合资企业中(尽管该套件已被英特尔收购),并宣布在苏格兰建立一个光子学中心,用于太空和量子研发。

PhotonDelta对荷兰的投资包括来自国家增长基金(Nationaal Groeifonds)的4.7亿欧元,其余部分由各种合作伙伴和利益相关者共同投资。这是荷兰政府国家计划的一部分,旨在巩固和扩大该国作为集成光子学世界领导者的地位。

PhotonDelta 生态系统目前由 26 家公司、11 家技术合作伙伴和 12 家研发合作伙伴组成。该组织已共同投资1.71亿欧元给有前途的光子学公司,包括Smart Photonics、PhotonsFirst、Surfix、MicroAlign、Solmates和Effect Photonics。

该计划将持续6年,将使PhotonDelta及其合作伙伴能够进一步投资于光子初创企业和规模化企业,扩大生产和研究设施,吸引和培训人才,推动采用,并开发世界一流的设计库。

光子集成电路将光子功能集成到微芯片中,以创建更小、更快、更节能的器件。PIC 目前用于数据和电信行业,以降低每比特的能耗并提高速度,预计到 2027 年,数据和互联网的使用量将占全球电力消耗的 10% 左右,这些提供了一种限制对气候影响的方法。

“这项投资改变了游戏规则。这将使荷兰成为下一代半导体的发源地,这将对整个欧洲科技行业产生深远影响,“PhotonDelta首席执行官Ewit Roos说。

“持续的芯片短缺凸显了欧洲迫切需要为战略技术建立自己的生产能力。我们现在将能够支持数百家初创公司、研究人员、生产商和创新者,以推动这个行业的发展,这将与几十年前引入微电子技术一样具有影响力,“他说。

荷兰被认为是PIC技术开发的先驱,由于荷兰政府的持续支持,我们已经能够围绕它建立一个完整的供应链,成为全球公认的光子集成热点。

光子芯片是过去十年中最重要的技术突破之一。它们不仅允许创造更快、更便宜、更强大和更环保的设备,而且还使经济实惠的即时诊断或量子计算等激进的新创新成为现实。

PhotonDelta 与埃因霍温理工大学 (TU/e)、特温特大学 (UT)、代尔夫特理工大学 (TUD)、霍尔斯特中心、TNO、IMEC、PITC、CITC、霍尔斯特中心、OnePlanet、Smart Photonics、Lionix International、Effect Photonics、MantiSpectra、PhotonFirst、Phix 和 Bright Photonics 合作。

它还包括与一家代工厂的战略合作伙伴关系,并与供应商Bruco、ASML、Aixtron、Solmates、芯片集成技术中心(CITC)、埃特博朗、爱尔兰廷德尔、萨兰工程、IMS和MicroAlign合作。

*声明:本文系原作者创作。文章内容系其个人观点,我方转载仅为分享与讨论,不代表我方赞成或认同,如有异议,请联系后台。

相关问答

【光致发光和电致发光测波长为什么结果会不同半导体发光就是...

[最佳回答]这是由于半导体能带结构和跃迁方式不同的关系.光致发光是吸收光子、通过直接跃迁将电子推向高能态;电致发光是通过电场驱动使电子跃迁到高能态,这里...

nb和cb的区别?

在于它们所使用的技术不同。具体来说,玫丽盼nb采用了非线性玻色取代离子的技术,这种技术能够大幅提升光信号的传输效率和信噪比,同时还能够支持更多的波长。...

光子芯片需要哪些大学专业?

1、微电子学与固体电子学、微电子科学与工程、集成电路工程:芯片设计、半导体材料、半导体器件、芯片制造、芯片封装。2、通信工程:芯片设计,更侧重数字芯片...

微波光子技术的意义?

微波光子技术是伴随着半导体激光器、集成光学、光纤波导光学和微波单片集成电路的发展而产生的一种新兴技术,是微波和光子技术结合的产物,它在射频(RF)信号的...

深圳大学光电工程学院怎么样?设有哪些专业?申请方

[回答]~接下来我为大家简单介绍一下我们深圳大学的光电工程学院开设的专业以及研究情况专业设置:光电信息科学与工程和测控技术与仪器深圳大学光电工程学...

光子与电荷的区别?

一、性质不同1、电荷:是带负电的亚原子粒子。2、光子:是传递电磁相互作用的基本粒子,是一种规范玻色子。二、作用不同1、电荷:电子束科技,应用于焊接,...

半导体激光和光纤激光的区别?

区别如下光纤激光和半导体激光的区别就是他们发射激光的介质材料不同。光纤激光器使用的增益介质是光纤,半导体激光器使用的增益介质是半导体材料,一般是砷...

电子与光子的区别?

电子:是带负电的亚原子粒子。2、光子:是传递电磁相互作用的基本粒子,是一种规范玻色子。二、作用不同1、电子:电子束科技,应用于焊接,称为电子束焊接;...

本征半导体的导电机制?

以下是我的回答,本征半导体的导电机制主要依赖于其内部的自由电子和空穴。在半导体中,原子通常会共享它们的电子,形成稳定的化学键。然而,当半导体受到外部能...

电子信息科学与技术发展方向目标?

电子信息科学与技术发展方向的目标是实现电子信息领域的持续创新、高速发展和广泛应用,从而为推动科技进步、改善生活质量和社会发展做出贡献。电子信息科学...

 那笛  唐山打人者 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部